Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(9)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37761650

RESUMO

In recent years, it has become clear that intrinsically disordered protein segments play diverse functional roles in many cellular processes, thus leading to a reassessment of the classical structure-function paradigm. One class of intrinsically disordered protein segments is entropic clocks, corresponding to unstructured random protein chains involved in timing cellular processes. Such clocks were shown to modulate ion channel processes underlying action potential generation, propagation, and transmission. In this review, we survey the role of entropic clocks in timing intra- and inter-molecular binding events of voltage-activated potassium channels involved in gating and clustering processes, respectively, and where both are known to occur according to a similar 'ball and chain' mechanism. We begin by delineating the thermodynamic and timing signatures of a 'ball and chain'-based binding mechanism involving entropic clocks, followed by a detailed analysis of the use of such a mechanism in the prototypical Shaker voltage-activated K+ channel model protein, with particular emphasis on ion channel clustering. We demonstrate how 'chain'-level alternative splicing of the Kv channel gene modulates entropic clock-based 'ball and chain' inactivation and clustering channel functions. As such, the Kv channel model system exemplifies how linkage between alternative splicing and intrinsic disorder enables the functional diversity underlying changes in electrical signaling.

2.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884522

RESUMO

Leishmania parasites are digenetic protists that shuffle between sand fly vectors and mammalian hosts, transforming from flagellated extracellular promastigotes that reside within the intestinal tract of female sand flies to the obligatory intracellular and non-motile amastigotes within mammalian macrophages. Stage differentiation is regulated mainly by post-transcriptional mechanisms, including translation regulation. Leishmania parasites encode six different cap-binding proteins, LeishIF4E1-6, that show poor conservation with their counterparts from higher eukaryotes and among themselves. In view of the changing host milieu encountered throughout their life cycle, we propose that each LeishIF4E has a unique role, although these functions may be difficult to determine. Here we characterize LeishIF4E-6, a unique eIF4E ortholog that does not readily associate with m7GTP cap in either of the tested life forms of the parasite. We discuss the potential effect of substituting two essential tryptophan residues in the cap-binding pocket, expected to be involved in the cap-binding activity, as judged from structural studies in the mammalian eIF4E. LeishIF4E-6 binds to LeishIF4G-5, one of the five eIF4G candidates in Leishmania. However, despite this binding, LeishIF4E-6 does not appear to function as a translation factor. Its episomal overexpression causes a general reduction in the global activity of protein synthesis, which was not observed in the hemizygous deletion mutant generated by CRISPR-Cas9. This genetic profile suggests that LeishIF4E-6 has a repressive role. The interactome of LeishIF4E-6 highlights proteins involved in RNA metabolism such as the P-body marker DHH1, PUF1 and an mRNA-decapping enzyme that is homologous to the TbALPH1.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , Leishmania/metabolismo , Proteínas de Protozoários/metabolismo , Análogos de Capuz de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Sequência de Aminoácidos , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/genética , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Biossíntese de Proteínas , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Análogos de Capuz de RNA/metabolismo , Proteínas de Ligação ao Cap de RNA/genética , Homologia de Sequência
3.
PLoS Negl Trop Dis ; 15(3): e0008352, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760809

RESUMO

Leishmania parasites cycle between sand-fly vectors and mammalian hosts adapting to alternating environments by stage-differentiation accompanied by changes in the proteome profiles. Translation regulation plays a central role in driving the differential program of gene expression since control of gene regulation in Leishmania is mostly post-transcriptional. The Leishmania genome encodes six eIF4E paralogs, some of which bind a dedicated eIF4G candidate, and each eIF4E is assumed to have specific functions with perhaps some overlaps. However, LeishIF4E2 does not bind any known eIF4G ortholog and was previously shown to comigrate with the polysomal fractions of sucrose gradients in contrast to the other initiation factors that usually comigrate with pre-initiation and initiation complexes. Here we deleted one of the two LeishIF4E2 gene copies using the CRISPR-Cas9 methodology. The deletion caused severe alterations in the morphology of the mutant cells that became round, small, and equipped with a very short flagellum that did not protrude from its pocket. Reduced expression of LeishIF4E2 had no global effect on translation and growth, unlike other LeishIF4Es; however, there was a change in the proteome profile of the LeishIF4E2(+/-) cells. Upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. The downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. Our results also suggest that the individual LeishIF4Es perform unique functions.


Assuntos
Adaptação Fisiológica/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4G em Eucariotos/metabolismo , Leishmania/genética , Sequência de Aminoácidos/genética , Animais , Antígenos de Superfície/biossíntese , Antígenos de Superfície/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica/genética , Humanos , Macrófagos/parasitologia , Psychodidae/parasitologia , Alinhamento de Sequência
4.
RNA ; 10(11): 1764-75, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15388875

RESUMO

All eukaryotic mRNAs possess a 5'-cap (m(7)GpppN) that is recognized by a family of cap-binding proteins. These participate in various processes, such as RNA transport and stabilization, as well as in assembly of the translation initiation complex. The 5'-cap of trypanosomatids is complex; in addition to 7-methyl guanosine, it includes unique modifications on the first four transcribed nucleotides, and is thus denoted cap-4. Here we analyze a cap-binding protein of Leishmania, in an attempt to understand the structural features that promote its binding to this unusual cap. LeishIF4E-1, a homolog of eIF4E, contains the conserved cap-binding pocket, similar to its mouse counterpart. The mouse eIF4E has a higher K(as) for all cap analogs tested, as compared with LeishIF4E-1. However, whereas the mouse eIF4E shows a fivefold higher affinity for m(7)GTP than for a chemically synthesized cap-4 structure, LeishIF4E-1 shows similar affinities for both ligands. A sequence alignment shows that LeishIF4E-1 lacks the region that parallels the C terminus in the murine eIF4E. Truncation of this region in the mouse protein reduces the difference that is observed between its binding to m(7)GTP and cap-4, prior to this deletion. We hypothesize that variations in the structure of LeishIF4E-1, possibly also the absence of a region that is homologous to the C terminus of the mouse protein, promote its ability to interact with the cap-4 structure. LeishIF4E-1 is distributed in the cytoplasm, but its function is not clear yet, because it cannot substitute the mammalian eIF4E in a rabbit reticulocyte in vitro translation system.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/metabolismo , Leishmania/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Simulação por Computador , Sequência Conservada , Citoplasma/química , Fator de Iniciação 4E em Eucariotos/química , Técnica Indireta de Fluorescência para Anticorpo , Guanosina Difosfato/química , Cinética , Leishmania major/metabolismo , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas de Ligação ao Cap de RNA/isolamento & purificação , RNA de Protozoário/isolamento & purificação , RNA de Protozoário/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
5.
J Biol Chem ; 279(11): 10148-56, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-14679208

RESUMO

Transfer of the green algae Chlamydomonas reinhardtii from low light to high light generated an oxidative stress that led to a dramatic arrest in the synthesis of the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The translational arrest correlated with transient changes in the intracellular levels of reactive oxygen species and with shifting the glutathione pool toward its oxidized form (Irihimovitch, V., and Shapira, M. (2000) J. Biol. Chem. 275, 16289-16295). Here we examined how the redox potential of glutathione affected the RNA-protein interactions with the 5'-untranslated region of rbcL. This RNA region specifically binds a group of proteins with molecular masses of 81, 62, 51, and 47 kDa in UV-cross-linking experiments under reducing conditions. Binding of these proteins was interrupted by exposure to oxidizing conditions (GSSG), and a new protein of 55 kDa was shown to interact with the RNA. The 55-kDa protein comigrated with Rubisco LSU in one- and two-dimensional gels, and its RNA binding activity was further verified by using the purified protein in UV-cross-linking experiments under oxidizing conditions. However, the LSU of purified and oxidized Rubisco bound to RNA in a sequence-independent manner. A remarkable structural similarity was found between the amino-terminal domain of Rubisco LSU in C. reinhardtii and the RNA binding domain, a highly prevailing motif among RNA-binding proteins. It appears from the crystal structure of Rubisco that the amino terminus of LSU is buried within the holoenzyme. We propose that under oxidizing conditions it is exposed to the surface and can, therefore, bind RNA. Accordingly, a recombinant form of the polypeptide domain that corresponds to the amino terminus of LSU was found to bind RNA in vitro with or without GSSG.


Assuntos
Chlamydomonas reinhardtii/enzimologia , RNA/química , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Regiões 5' não Traduzidas , Animais , Sítios de Ligação , Western Blotting , Cloroplastos/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Glutationa , Dissulfeto de Glutationa/farmacologia , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio , Proteínas Recombinantes/química , Temperatura , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...